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Error Attenuation in Abel Inversion 
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A data approximation technique is presented for solving numerically the Abel integral 
equation. The side-on intensity is developed in a set of even powers. The optimization of the 
number of terms in the expansion makes it possible to control the smoothing of the data, and 
thereby strongly reduces the effects of experimental errors. The results are compared with 
those obtained by other methods, demonstrating the utility of this technique. 

1. INTRODUCTION 

If the emissivity E of an optically thin cylindrical plasma is assumed to depend 
only on the radial variable r, the side-on intensity may be written 

Z(X) = 2 Jo+““- c(r) dy, y* = r* - x2, (l-1) 

where x and y are Cartesian coordinates, and r, is the outer radius of the cylinder 
(see Fig. 1). By changing the integration variable, this equation becomes 

FIG. 1. Geometry of the problem. 
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and by applying the Abel inversion formula [ 11, the solution of Eq. (1.1) is given by 

1 
Et4 = ; 

I 

Z(rcl) 
I :” 

1’ (xl 
tr; _ r2)‘/2 - (x” _ r2)1/2 dx ’ 

I 

where Z’(X) denotes the first derivative of Z with respect to x. Since the plasma is not 
irradiated by any external source, Z(r,) = 0, and hence Eq. (1.3a) reduces to 

Et4 = - + 1 :” 
Z’(x) 

(x2 _ r2)1/2 dx. 

The measurements give a set of N values of Z(x). From these values, the emissivity 
is to be determined either by solving integral equation (l.l), or by evaluating 
Eq. (1.3). Different techniques have been proposed to solve this problem. They may 
be divided into two classes: numerical methods and data approximation techniques. 

The numerical methods are based on a common principle: either the side-on 
intensity or the emissivity is assumed to have a variation given by a particular law 
over a small interval, namely, the distance between two points of measurements (see, 
for example, [2-71). The emissivity is generally obtained by a recurrence formula, the 
computation starting at r = r0 and ending at r = 0. The measurements near the edge 
being the most difficult, the determination of the emissivity in this region is not easy, 
and hence, it must be expected that the calculated distribution will involve large 
uncertainties due to error propagation. 

In data approximation techniques, Z(x) is developed in a set of basis functions $i, 
chosen for some particular properties (see, for example, [8-121). The number of such 
functions is either arbitrarily fixed or optimized. This optimization makes it possible 
to obtain and control the smoothing of the measurements, and thereby reduces the 
effects of the experimental errors. 

2. SUGGESTED METHOD 

The experiment to which the method will be applied, dictates the following 
limitations: 

(i) a reduced number of points (the maximum is 21), 
(ii) unequally spaced points. 

It is also desirable to smooth the data in order to eliminate experimental errors. 
The side-on intensity is approximated by a polynomial: 

where the coefficients ai are determined by minimizing the errors with respect to the 
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experimental data, using a least-squares approximation. The system of equations thus 
obtained is solved by the modified Cholesky method [ 131. 

The emissivity E(T) is then given by analytical integration of (1.3) using the 
following formulae: 

J 
. dx 
- = In ] x + s], 

s 
X2m 2m-I 

i 
-dxd- 

2m- 1 

” s 2m 
s+2mr 

2 .p-‘) 

J 
- dx, m > 0; (2.2a) 

s 
2m+1 

J 

.X m m s2j+l 
fZ(m-j) 

e=j=o j 2j+ 1 ' s z( ) 

m > 0; (2.2b) 

where s = (x2 - r2)1’2 and (7) represents the binomial coefficients. Since, in the 
present problem, the emissivity depends only on the radial variable r, Z(x) must be an 
even function, and hence, its development will contain only even powers of x. Thus, 
only Eq. (2.2b) is needed. 

Additional formulae may be obtained from Eqs. (1.2) and (1.3b), using the relation 
(2.1). If 

Z(x) = i azixzi, with ]x] < r,, = 1, 
i=O 

then 
k 

Z’(1) = C 2iazi; 
i=O 

&(I = 0) = - + ,i & a2i ; 
I-O 

&(l -S)II -(l/a)(2s)“‘z’(l), a< 1. 

(2.3a) 

(2.3b) 

(2.3~) 

3. OPTIMIZATION OF THE DEGREE OF THE BASIS FUNCTIONS 

3.1. Criterion of the Least Square Approximation 
The measurements give N couples (xi, Ii) and the polynomial expansion gives N 

couples (xr, Z(xi)). A measure of the goodness of the resulting approximation [ 141 is 

S = (a2/(N - m))“‘, (3.1) 

where 

a2 = 2 (Ii - z(xi))2; 
i=l 
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FIG. 2. Test Function 3; (N= 23, 3 decimal places) (0) S; (+) urad. 

m is the number of basis functions in the development; and m = (n/2) + 1, where n is 
the maximum degree of development. 

Figure 2 shows the variation of S as a function of n, the maximum degree of the 
basis functions, on a semilogarithmic diagram (the execution of the tests is explained 
in Section 5). The optimal degree is determined by the minimum of S [ 151, as the 
comparison between S and urad shows. The latter allows the determination of the 
actual optimum degree 
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FIG. 3. Test Function 1; (a = 0.5), (N= 23, 3 decimal places), (0) s; ($1 b,,d. 

(3.2) 
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If the measurements were accurate, an increase in the degree n would lead to a 
decrease in u* and therefore a decrease in S. After the minimum value of c* has been 
reached (minimum error of polynomial approximation), any new increase in n would 
produce an increase in S. When experimental errors are considered, the same 
criterion makes it possible to control the smoothing of the data. The case shown in 
Fig. 2 is in fact an ideal one, the degree being unequivocally defined. The choice is 
not always so obvious. This problem is illustrated in Fig. 3: the optimal degree is 
given by the beginning of the level n = 12, and not by the minimum of S. 

3.2. Effects of the Peripheral Intensity 

As mentioned in the introduction, Z(r,) = 0, and therefore, the choice of the 
optimal degree nopt should be subject to this constraint. Figure 4 shows the result of 
taking into account the value of I(r,) obtained for the different maximum degrees. 
The criterion based on S gives nopt = 16 while the behaviour of I(r,) dictates clearly 
that nopt = 10. In addition, relation (2.3~) suggests that a criterion for the choice of 
the optimum degree might also be I’(r,) < 0. 

Three complementary criteria are thus available to help us choose the optimum 
degree. It must be noted that the choice, among the selected degrees, should be the 
lowest possible value. In fact, too high a degree reduces the smoothing, and hence, 
generates undesirable oscillations. 

4. PARTICULAR RADIAL DISTRIBUTION 

4.1. Discontinuous Emissivity 

The test functions used by other authors ([ 16, 171, for example) are generally 
chosen so that E(T,,) = 0 or e(r,J < E,,,, with the exception of those taken from [ 181. 
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FIG. 4. Test function 5; (N= 21, 3 decimal places) (A) S; (+) I@,); (0) urad. 
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TABLE I 

Number 
of points 

nopt 
I@,) 
I’(rlJ 

N=21 N=23 

16.0 20.0 
0.164 0.0 

-13.8 -23.1 

It seemed desirable, however, to study also the behaviour of the written program for 
an emissivity with E(rJ # 0. If 

E(r)=E,(r)+A(l-q-r,)), 

where 
&I@0) = 0 (4.1) 

and U(r - r,,) is a step function at r = r,, , then 

and 

Z(x) = II(X) + 2A(ri - xy, 

Z(r,) = 0, 

Z’(r,) = -al. 

(4.2) 

The behaviour of Z’(r,) may suggest the existence of a nonzero value of the emissivity 

at I = r, . 
The chosen emissivity and intensity distributions are 

E 

i.a 

0.1 

0.c 

E(T) = 1, 

I(x) = 2(ri - x2)“*. 

a 

A 

.O 0.5 1.0 r 

FIG. 5. Test Function 2; E = E(T); (A) N = 21; (E) N = 23. 
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FIG. 6. Test Function 2; (N= 23, 3 decimal places), E = E(T). 

Twenty-one data points are symmetrically located around x = 0, with 1x1 = r,, 
omitted. In a second test, the points ]x ] = rr, are included. The results are shown in 
Table I, while Fig. 5 describes the distributions. 

By forcing Z(fr,) to be zero, the calculated distribution is actually improved. The 
value of Z’(r,), already large, has increased in the second test, so that it is consistent 
to have a nonzero value for E(TJ. It should be noted that the method does not give 
this value, which must therefore be determined by graphical extrapolation. 

4.2. Oscillations and Optimum Degree 

The radial distribution of e(r) given by the test with 23 points exhibits 
nonnegligible oscillations for r > 0.9r,. This phenomenon appears in a similar way in 
the Fourier series representation of a discontinuous function (Gibbs phenomenon). 
The oscillations for r < 0.9r, are inherent in the method [lo]. They can not, however, 
be considered as real variations in the emissivity, since their values are below one per 
cent (see Fig. 6). The Gibbs phenomenon gives a justification of the criterion for 
choosing the optimum degree. The coordinates (r, E) of the point where the overshoot 
is a maximum (point M in Fig. 6) are shown graphically for various maximum 
degrees of the polynomials (Fig. 7). The degree n = 20 behaves as a limit of stability 
with regard to the oscillations. This fact seems to confirm the validity of the criterion 
(see Table I). 

5. COMPARISON BETWEEN DIFFERENT METHODS 

To check the FORTRAN code, tests have been carried out on a CDC 6600, with 
radial distributions for which the side-on intensity is known analytically (see 
formulae (2.2) and the Appendix). 
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FIG. 7. Test Function 2; (N= 23, 3 decimal places), coordinates (r, E) of the point M as a function 
Of n, (0) r&f; (+I E@M). 

For data, N points (x,, Z(xi)) are chosen. Z(x,) is defined with limited precision, 
subordinate to the number of decimal places. It should be noted that such data are 
not strictly random. The standard deviations, calculated by (3.2) are compared with 
results presented by [ 10, 16, 171 (see Tables II, III). 

TABLE II 
Test Function 5: s(r) = 1 - 3r2 + 2r3 (r,, = 1) 

Decimal Number 
places of 

points 

Nestor, 
Olsen 

131 

Landenburg 
et al. 

[21 

Frie 
[41 

Cremers, 
Birkebak 

[lOI 

Glasser 
et al. 

I161 

This 
work 

exact 11 0.0125 0.0033 0.0024 0.180 0.004 0.0002 1 
21 0.0046 0.0008 0.0006 0.004 o.cQcO7 0.00020 

2 11 0.0139 0.0104 0.0839 0.1770 0.0035 0.0029 
21 0.0113 0.0144 0.0125 0.0067 0.0057 0.0037 

TABLE III 

Test Decimal 
Functions Places 

(N=21) 

la=O.5) 3 1 
4 3 

50=“.5) 3 

Frie 
[41 

0.017 0.242 
0.007 

0.03 1 

Edels 
et al. 

[51 

0.528 0.010 
0.006 

0.028 

Barr Bockasten 
191 PI 

0.006 0.025 0.100 0.03 1 
0.003 0.005 

0.013 0.036 

Glasser 
et al. 

[I61 

0.0007 0.020 
0.0006 

- 

This 
work 

0.0006 0.022 
0.0005 

0.006 

581/47/3-S 
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As expected, the data approximation techniques give better results than the 
numerical method. Though the accuracy of all methods decreases with increasing 
data scattering, the comparative accuracy of the data approximation techniques 
improves since they permit a smooth approximation to be obtained from the data. In 
spite of the problem described in Section 3.1, the optimum degree may be objectively 
chosen. When the three criteria (S, Z(r,), Z’(r,)) are applied together, the possibilities 
of the choice are reduced to one or two values which give almost identical results. 
This property seems to be an advantage, compared with the interactive control of the 
smoothing in [ 161. It must be pointed out that the single criterion based on S [ 121 
may lead to negative emissivity which is physically unacceptable. This criterion must 
therefore be completed by the two others. 

6. CONCLUSION 

The proposed technique has the ability to work with unequally spaced and 
nonnumerous data which contain experimental errors. 

The main contribution of this method which is easily adapted to computer 
calculation, is the choice of the optimum degree of the polynomial expansion of the 
side-on intensity. Although this degree may not be unequivocally determined, the 
developed criteria indicate good reliability. 

Results obtained either with theoretical distributions (see Tables II, III) or with 
experimental data [ 11, 191 confirm the validity of the technique presented in this 
paper. 

APPENDIX: TEST FUNCTIONS 

T.F. 1. c(r) = exp(-r’/a’), 

Z(x) = an”* exp(-x*/a’) erf((ri - x*)“*/a). 

T.F. 2. E(T) = 1, 

Z(x) = 2(ri - xy. 

T.F. 3. c(r) = ; + 12r’ - 32r3, if 0.0 < I < 0.25, 

= g(l + 6r - 15r2 + 8r3), if 0.25 < r < r, = 1. 

Z(x) obtained by integration of (1.2). 

T.F. 4. c(r) = r* exp(-r’/a’) 

Z(x) = an1’2 exp(-x*/a’) erf((ri - x2)“*/a)(x2 + a*/2) 

- a2 exp(-ri/a’)(ri -x2)“* 
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T.F. 5. E(T) = 1 - 3r* + 2r3 (r. = 1) 

I(x) = (1 - x*)‘/*( 1 - 5/2x*) + 3/2x4 In I( 1 + (1 - x~)“~)/xI. 

Except when otherwise stated, the tests are performed with r,, = 1. 
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